How large was the founding population of Darwin’s finches?

VLADIMIR VINCEK1, COLM O’HUIGIN2, YOKO SATTA3, NAOYUKI TAKAHATA3, PETER T. BOAG4, PETER R. GRANT5, B. ROSEMARY GRANT4 AND JAN KLEIN1,2

1Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA
2Max-Plank-Institut für Biologie, Abteilung Immunogenetik, Corrensstr. 42, D-72076 Tübingen, Germany
3Coordination Center for Research and Education, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-01, Japan
4Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6
5Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA

SUMMARY

A key assumption of many allopatric speciation models is that evolution in peripheral or isolated populations is facilitated by drastic reductions in population size. Population bottlenecks are believed to lead to rapid changes in gene frequencies through genetic drift, to facilitate rapid emergence of novel phenotypes, and to enhance reproductive isolation via genetic revolutions. For such effects to occur, founding populations must be very small, and remain small for some time after founding. This assumption has, however, rarely been tested in nature. One approach is to exploit the polymorphism of the major histocompatibility complex (Mhc) to obtain information about the founding population. Here, we use the Mhc polymorphism to estimate the size of the founding population of Darwin’s finches in the Galápagos Archipelago. The results indicate that the population could not have been smaller than 30 individuals.

1. INTRODUCTION

Speciation involves genetic changes that differentiate gene pools derived from an ancestral pool and ultimately produce a reproductive barrier between the emerging species (Dobzhansky 1937; Mayr 1942, 1963; Otte & Endler 1989). The changes have traditionally been studied by three principal methods: by following genes in artificial populations over a certain number of generations (reviewed in Rice & Hostert 1993); by cross-breeding closely related species to reveal the underlying genetic differences and inferring the changes responsible for them (e.g. Coyne et al. 1994; Wu et al. 1995); or by developing theoretical models and examining their feasibility analytically or by computer simulation (e.g. Templeton 1981). Recently, however, a fourth method has become available by which a population’s demographic history is inferred from characteristics of extant gene pools (Klein et al. 1993a). This new approach has been made possible by two major innovations: the formulation of the gene genealogy (coalescence) theory (Kingman 1982a, b; Tavaré 1984; Watterson 1984; Hudson 1990) and the development of rapid methods of gene amplification and sequencing (Saiki et al. 1988). Genes that display long-term balanced polymorphism often have coalescence times longer than the life-span of a species (Takahata 1990; Takahata & Nei 1990). Such genes can then be used to make inferences about past speciation events, especially about the size of the founding population. A particularly rich source of genealogical information has been found in the genes of the major histocompatibility complex, Mhc (Klein et al. 1990a; Klein et al. 1993b).

The Mhc is a group of loci specifying cell-surface receptors for peptides derived from self and nonself proteins (Klein 1986; Srivastava et al. 1991). The Mhc genes are under balancing selection and are transmitted from ancestral to descendant species as conserved allelic lineages (Klein 1987; Klein et al. 1993a). This property has been exploited to estimate the size of the founding populations of Homo sapiens (Klein et al. 1990a, b, 1993a) and of cichlid fishes in Great East African Lakes (D. Klein et al. 1993; Ono et al. 1993).

One group of speciation hypotheses is based on the assumption that the founding populations are generally very small (Templeton 1980; Carson & Templeton 1984; Giddings et al. 1989; Hollocher 1996). Populations are believed to pass through one or more bottleneck phases which create conditions for rapid remodelling of the genotype and fixation of genes responsible for reproductive isolation of the emerging species. According to the hypothesis new species arise from a single inseminated female, or at most from very few individuals. This situation is believed to occur during colonization of geographically distant places and is exemplified by the radiation of Darwin’s finches on the Galápagos Islands.

The Galápagos Archipelago is a group of 13 large and six smaller islands some 960 km west of the coast of
Imanishi genes for the HLA number of alleles (35) and the same allelic frequencies as the parental population was assumed to have contained the same population. For want of a more appropriate model, the pool was assumed to have existed on the continent, from based on simple assumptions. A parental population (gene maintenance of alleles a computer program was developed, ff simulate the e arithmetic mean (Nei 1987) and the unweighted pair-group method with

sequenase kit (US Biochemicals) and \(\Phi \) plasmid vector using Pharmacia Sure Clone kit. Double-point agarose (Gibco BRL) and subcloned in the pUC18

ff

genes were passed onto the next generation with the Proc ff er a crassirostris DNA was extracted from small blood samples collected from living birds captured on the Galápagos Islands. The primers used for polymerase chain reaction (PCR) amplification (HOPE1 5’GAAAGCTCAGTGTCACTTCACG-AA CGGC3’ and HOPE2 5’GGGTGACAATTGGGTAG- TGTGTCGGCCAG3’) were synthesized by Keystone Laboratories, Inc., Menlo Park, CA. The PCR was carried out as described earlier (Vincek et al. 1995). The PCR products were purified by electrophoresis in low-melting point agarose (Gibco BRL) and subcloned in the pUC18 plasmid vector using Pharmacia Sure Clone kit. Double-stranded DNA was isolated from individual subclones using Qiagen plasmid kit and sequenced by the dideoxy chain-termination method (Sanger et al. 1977) using version 2.0 sequence kit (US Biochemicals) and [\(\Phi \) dATP].

Substitutional distances were measured using Kimura’s two-parameter method (Kimura 1980), and dendograms were constructed by the neighbour-joining algorithm (Saitou & Nei 1987) and the unweighted pair-group method with arithmetic mean (UPGMA; Sokal & Michener 1958). To simulate the effect of the founder population size on the maintenance of alleles a computer program was developed, based on simple assumptions. A parental population (gene pool) was assumed to have existed on the continent, from which a random sample was drawn to form the founding population. For want of a more appropriate model, the parental population was assumed to have contained the same number of alleles (35) and the same allelic frequencies as the HLA-DRB1 locus in the Caucasian human population (see Imanishi et al. 1991). From this population, \(2N_s \) genes were drawn randomly and paired. Each pair was then evaluated for homo- and heterozygosity and the two randomly chosen genes were passed onto the next generation with the probability of one (heterozygotes) or 1-\(s \) (homzygotes), where \(s \) was the selection coefficient. The random drawing of genes for the \(p \) generation after the founding event continued until either \(2N_c \) or \(2N_a \) \((1+r)^p \) (depending on the model) size of gene pool was reached (where \(r \) was the growth rate). This process was repeated for ten generations (model B) or until the population size of 1000 individuals was reached (models A, C–E), at which time the number of alleles retained in the population was determined. The entire simulation was repeated 1000 times, and the mean number of retained alleles as well as the standard error of the mean was calculated and plotted on the ordinate of a graph against the chosen \(N_s \) value on the abscissa. A different \(N_s \) value was then chosen and the entire procedure repeated. In this way, curves were obtained indicating the number of retained alleles for different \(2N_a \) sizes and different simulation parameters. Mutations were not introduced into the simulation model because we were concerned with allelic lineages that were present in the ancestral populations at different times in the past and not with alleles produced by mutations after the founding event.

2. MATERIALS AND METHODS

To identify the Mhc genes of Darwin’s finches, we designed PCR primers on the basis of Mhc class II sequences of the Bengalese finch (Lonchura striata; Vincek et al. 1995) and domestic fowl (Wittzell et al. 1994). The oligonucleotides were complementary to the 5’ and 3’ ends of exon 2, to regions that are relatively conserved among various Mhc class II genes. The products obtained by PCR amplification using these primers were 173 bp long and encompassed the most polymorphic part of Mhc class II genes (Klein & Figueroa 1986). We were able to amplify the DNA from 20 birds representing eight species: Cactospiza pallida (Capa, 1), Certhidea olivacea (Ceol, 1), Geospiza cornirostris (Geco, 2), Geospiza fortis (Gefo, 6), Geospiza fuliginosa (Gefu, 2), Geospiza magnirostris (Gema, 3), Geospiza scandens, (Gesc, 3), and Platyspiza crassirostris (Plcr, 2). (Here the letters in parentheses are the species Mhc symbols according to the nomenclature system proposed by Klein et al. 1990c; the numbers indicate the number of individuals tested.) The amplification products were cloned and sequenced. Altogether we obtained 103 sequences of which 60 were different from one another (the sequences have been deposited in the EMBL databank and can be retrieved under the accession codes Z74411–Z74470). Identical sequences were found mostly in individuals of the same species (33/103) and fewer in individuals of different species (10/103). Based on their similarity, the sequences could be arranged into four groups. In addition to the greater overall similarity, sequences within each group shared sequence motifs—short stretches of residues present in most sequences of a given group. The motifs stand out particularly in the amino acid sequences translated from the nucleotide sequences. The four groups are clearly separated in the dendogram based on the nucleotide sequences (figure 1). Each group, except group four, contains sequences from most of the species tested. Groups 1–4 contain 21, 18, 13 and 8 sequences, respectively.

On the basis of the following two observations, we conclude that the four groups represent different loci. First, whenever a similar situation has been encountered in other vertebrate species, the groups could ultimately be shown to constitute different loci. A good example is provided by the cichlid species of the Great East African lakes (D. Klein et al. 1993; Ono et al. 1993), in which the Mhc sequences were initially classified into 13 groups on the basis of similarities in the order of those observed in Darwin’s finches, and the groups were later shown to represent distinct loci (E. Malaga et al. unpublished data). Second, several
individual birds were shown to possess more than two different sequences. In all such cases, the multiple sequences of a given bird fell into more than one group. Similarly, two observations support the conclusion that at least Group 1 represents a set of alleles at a single locus. First, no more than two sequences of this group were found in any individual bird. Second, sequences of this group share characteristic motifs; sharing of motifs between sequences of different loci has not been observed in any vertebrate species. These two arguments apply also to Groups 2 and 4; Group three may represent two loci. Group 1 consists of 21 sequences which we conclude are all derived from alleles at a single locus. To estimate the size of the founding population of Darwin’s finches, it is necessary to know how many of these alleles (allelic lineages) were present in the founding population. To obtain such an estimate, we constructed a dendogram of Group one using the upgma (figure 2), which is more suitable for estimating coalescence time than the neighbour-joining method (Nei 1987). Next, we obtained a time scale for the upgma tree by comparing the Mhc class II sequences of the pheasant (Zoorob et al. 1990) and the domestic fowl (Wittzell et al. 1994), two species which are believed to have diverged 20 MYA (Helm-Bychowski & Wilson 1986). The comparison yielded an evolutionary rate of 3.9×10^{-9} nonsynonymous substitutions per nonsynonymous site per year and 1.6×10^{-9} synonymous substitutions per synonymous site per year, so that the overall rate is $3.5 \times 10^{-9} + 0.7$ per site per year; this is comparable to the rate of mammalian Mhc loci (Satta et al. 1993, Edwards et al. 1995). Taking the pheasant-fowl divergence at 20 MYA, we calibrated the scale in figure 3. The standard error of the pheasant-fowl distance estimate indicates the calibration error to be about 20%. The perusal of the scale indicates that all 21 alleles of Group 1 coalesce to a single common ancestor about 15 MYA. Since the formation of the Galápagos Archipelago did not begin until about 10 MYA (Christie et al. 1992; but see Geist 1996; furthermore there are data suggesting that marine iguanas of the Galápagos Archipelago diverged earlier than 10 MYA; see Rassmann 1995), the founding population of Darwin’s finches presumably contained multiple allelic Mhc lineages, some of which have persisted up to the present time.

To estimate how many of the allelic lineages were present in the founding population, it is necessary to
Figure 3. Computer simulation to determine the number of alleles retained in populations founded by individuals and evolved according to the program described in §2. Four models of evolution were tested: A, Immediate expansion from the founding population at a growth rate of 50%; B, No expansion – population size remains constant at founding \(N_0\) level for ten generations; C, Expansion at a growth rate of 5% begins after ten generations, during which the population size remained constant at the \(N_0\) level; D, The same as under A, but at a growth rate of 5%. In all simulations \(s\) was equal to 0.01, and simulations A, C, and D were stopped once the population size of 1000 individuals was reached. The bars indicate 90% confidence limits of the number of retained alleles (i.e. in 5% of the cases the number of retained alleles was greater than indicated by the upper limit, and in another 5% of cases it was lower than the indicated lower limit).

Know when the founders arrived at the Islands. Obviously, they could not have arrived before the first island was formed, so the arrival time presumably was \(<10\text{ MYA}\). Two sets of data are available for narrowing down the arrival time more precisely – data on allozyme (Young & Patton 1981) and \(Mhc\) variation (this communication). The original estimate based on 27 allozyme-encoding loci suggested that the 13 species of Darwin's finches diverged 570000 years ago (Young & Patton 1981). Reanalyses of these same data using an updated calibration of the avian molecular clock puts the divergence time at \(2.8\text{ MY}\) (Grant 1994). The observations that identical \(Mhc\) sequences are shared by some of the finch species can be used to estimate the minimum divergence time of these species. Taking the estimated rate of \(3.5 \times 10^{-8}\) substitutions per site per year, it could be expected that the birds would accumulate one substitution per exon 2 per 0.6 million years (MY). The presence of identical alleles (in terms of exon 2 sequences) in different species therefore suggests that at least some of the species diverged \(<0.6\text{ MY}\) (the possibility cannot, however, be excluded that the sharing is the result of inter-species hybridization).

Both the \(Mhc\)- and the allozyme-based estimates have a large range of error.

Since the arrival time of the founders at the Galápagos Islands cannot be determined precisely from the available data, we will consider three different values here: 600000 years (the lower limit estimated from the \(Mhc\) data), \(2.8\text{ MY}\) (the revised estimate from the allozyme data), and \(5\text{ MY}\) (the approximate age of the extant islands and the upper limit of all the estimates, see White et al. 1993). The initial colonization preceded the initial within-Archipelago divergence by an unknown period of time. From the dendogram in figure 2, we estimate that of the 21 alleles now constituting group one, 20, 16 and 13 allelic lineages existed 600000 years, 2.8 and \(5\text{ MY}\), respectively. If all the birds that colonized the Islands were heterozygous for Group 1 alleles, and if no alleles were lost subsequent to colonization, the absolute minimum sizes of the founding population would have to be 10, 8 and 7 individuals, respectively. To take the effect of drift into account and to estimate the number of founders needed to ensure the emergence of 21 Group 1 allelic lineages now present in the species tested, we carried out computer simulation using the program described in §2 and varying the input parameters.

The fate of the \(Mhc\) allelic lineages after the founding event could have been influenced by the mode of expansion of the founding population. We have, therefore, considered two variants of this parameter. In the first variant, the size of the population remained at the founding level for ten generations (= bottleneck period) and then began to expand logarithmically. In the second variant, the founding population began to expand immediately after the birds reached the islands.
Note that because of the rapid growth rate and small alleles based on model A computer simulation in figure 3. Figure 4. Probability distribution for the number of retained lineages (where \(R \))

\[
P(N_b = k | s, N_0) = \frac{e^{-(N_0 - 1) s k}}{k!} \frac{1}{\sum_{i=0}^{\infty} e^{-(N_0 - 1) s i}}
\]

for \(k = 1 \) to \(k \), where \(s \) is the substitution rate, \(N_0 \) is the initial population size, and \(N_b \) is the bottleneck size. The probability of retaining at least \(k \) alleles is then given by the cumulative distribution function:

\[
P(N_b = k | s, N_0) = \frac{1}{k!} \sum_{i=0}^{k} e^{-(N_0 - 1) s i}
\]

This distribution is used to assess the probability of retaining at least \(k \) alleles in a new population, given the initial population size and the rate of substitution. The effects of balancing selection pressure are also considered, leading to the formulation of the probability distribution for the number of retained alleles under such conditions.

Current population sizes of most species on most islands fluctuate between hundreds and thousands of individuals (Grant & Grant 1989, 1992). We have examined population expansion up to a size of 1000 individuals in our models, after which we presume no allelic loss to occur. This assumption reduces the liberal estimates of founding population size somewhat, but conservative estimates are unaffected.

Parts of the Mhc exon 2 (the peptide-binding region or PBR-specifying sites) are known to be evolving under balancing selection pressure (Hughes & Nei 1989; Takahata et al. 1992). The intensity of this pressure \((s) \) has been estimated as being \(< 0.01 \) (Satta et al. 1994). We have therefore taken this value of \(s \) into consideration.

In the simulations, we used three combinations of parameters that represent the extremes and a middle ground between them. The one extreme is: founding event taking place 5 Ma, expansion following founding immediately at a rate of 50%, and no further loss of alleles once the population exceeds 1000 individuals. This extreme minimizes the size of the founding population by providing the most favourable conditions for the persistence of alleles from the time of the founding event to the present. The other extreme is: founding 600,000 years ago and bottleneck period lasting for ten generations followed by expansion to 1000 individuals at a rate of 5%. (We include this variant for completeness; in those instances in which founding of a new population has been observed, exponential growth occurred without a lag period; see Grant & Grant 1995.) These conditions maximize the size of the founding population. The third set of parameters (which we consider to be most realistic) is: founding event 2.8 Ma and expansion to 1000 individuals at a rate of 5% or 50% immediately following the founding event. The results of the simulation are summarized in figures 3 and 4. The simulation shows that the most favourable conditions for the retention of alleles exist when the population begins to expand at a high rate of 50% (model A in figure 3) immediately after founding. These conditions therefore provide the most conservative estimate of \(N_b \); all other conditions tested (figure 3B–E) require higher \(N_b \) values than model A for retention of alleles. The population of \(N_b = 50 \) (40) under model A will retain 20 or more alleles with a probability of 67% (34%); populations of smaller founding sizes are less likely to do so, the probability being 2% for \(N_b = 30 \) and 0% for \(N_b = 20 \). The probability of retaining no fewer than 16 or 13 alleles is higher: 99% or 100% for \(N_b = 50 \), 95% or 100% for \(N_b = 40 \), 48% or 93% for \(N_b = 30 \), and 11% or 67% for \(N_b = 20 \). A founder population of 10 individuals cannot retain even 13 alleles (figure 4). In other words, to retain at least 20, 16 and 13 alleles with a probability of 5%, the founding population sizes would have to be \(> 32 \), \(> 20 \) and \(> 15 \) individuals, respectively (figure 3). Hence, even if the colonization of the Galápagos Islands occurred as long as 5 Ma, founding by fewer than 15 birds would be highly improbable.

These estimates are most conservative not only because model A is the most favourable for the retention of alleles, but also for other reasons: the number of Group 1 alleles is almost certainly greater than 21 (the tested sample was small and not all the species and islands were sampled); only one of several Mhc loci was used for the calculations (inclusion of other loci would have increased the \(N_b \) estimates); the use of the Caucasoid population as a model for the parental finch population probably overestimates the variability of the latter (and hence underestimates the \(N_b \)); and the assumption of no Allelic loss after the population reached the size of 1000 individuals is probably unrealistic. The factors that could reduce the \(N_b \) estimate include the time since colonization, intensity of selection, and the Mhc substitution rate. As was indicated earlier, it is not likely that the Islands were colonized more than 5 Ma. As for selection...
intensity, computer simulations have revealed very little influence of the various s values on the N_e estimates (figure 4), probably because in the relatively small populations drift prevails over selection. In particular, the initial sampling of N_e genes strongly influences the number and frequencies of founding alleles. Similarly, variation in the substitution rate within the standard error of the estimate has only a minor effect on the population size estimate.

While the evidence for the evolutionary rate at Mhc loci used in the simulation is strong (see Klein et al. 1993b), one might perhaps argue that under exceptional circumstances such as those existing when a population colonizes an entirely new environment, the rate might be accelerated. It has indeed been claimed, for example, that human Mhc class I loci evolve rapidly in certain South American Indian populations because of selection pressure exerted by the environment (Belich et al. 1992; Watkins et al. 1992). We have, therefore, considered the possibility that most of the Mhc polymorphism now found in the Darwin’s finches arose by mutation and has been maintained by selection after the colonization of the Galápagos Islands. There is convincing evidence that positive (balancing) selection influences the evolution of functional Mhc loci (Hughes & Nei 1989; Takahata et al. 1992) and that the effect is limited to the sites encoding the PBR of the Mhc molecule. These sites are known in humans and mice (Brown et al. 1993) and can be identified in other species by their polymorphism. We therefore eliminated the putative PBR sites from the sequence alignments and reanalysed the sequences without them. This modification, however, did not influence significantly the results of the analysis. Even when the PBR sites are not taken into account, it is still necessary to postulate the presence, 2.8 Ma, in the founding population of at least 14 alleles at the Group 1 locus to explain the extant polymorphism at this locus.

If the effective population size (N_e) was 30 individuals the number of actual colonists (N) is likely to have been 50–100 because effective sizes are 25–50% of the number of breeders (Grant & Grant 1992). Darwin’s finches form large flocks of this size and disperse in the non-breeding season (Grant 1986), and it is reasonable to assume that their ancestors did so as well. Flocks are largest, and inter-island movements are most frequent, during and after an El Niño year of prolific breeding, such as occurred in 1983. Vegetation mats get carried out to sea from the estuary of the Guayas river on the adjacent mainland, especially in El Niño years, and one of these may have acted as a resting place for the colonizing finches at some intermediate distance between the mainland and the islands. Indeed, the occurrence on the Galápagos of non-flying and non-swimming terrestrial animals like land iguanas, lizards and geckos may best be explained by rafting across the whole distance. While these ideas are necessarily speculative, long-distance colonizations by birds have been recorded elsewhere in modern times. White-eyes (Zosterops lateralis) colonized the south island of New Zealand from Tasmania in 1856, having crossed a gap of 2000 km (Mayr 1963), and fieldfares (Turdus pilaris) colonized Greenland, apparently from southern Norway and via Jan Mayen Island, in 1937 (Salomonsen 1951). In neither case was the size of the founding population known, although the fieldfares were known to have travelled in a large flock (Salomonsen 1951). Another possibility is that the islands were colonized more than once by a smaller number of individuals each time. The remoteness of the islands makes this unlikely, although not impossible. All we can say is that there is no clear sign of multiple colonizations from different points of origin in the distribution of the Mhc polymorphism among the extant species. We conclude, therefore, that the Galápagos Islands were colonized once by the ancestors of Darwin’s finches, and that the founding population consisted of no fewer than 30 individuals. We emphasize that this is the minimum estimate obtained by considering extreme conditions favouring colonization; it is, in all probability, an underestimate of the actual size of the founding population.

The main implication of our estimate is that a major genetic reorganization associated with an extreme bottleneck (e.g. see Templeton 1980; Carson & Templeton 1984) is unlikely to have occurred in the early stages of establishment of Darwin’s finches on the Galápagos Islands.

We thank the Galápagos National Park Service and the Charles Darwin Research Station for permission and support in carrying out the field work, Ms Moira Burghoff for editorial assistance, Mr Joseph Olczyk for technical assistance, and Dr David Stern, Department of Ecology and Evolutionary Biology, Princeton University, for critical reading of the manuscript.

REFERENCES

Klein, J., Gutknecht, J. & Fischer, N. 1990a The major histocompatibility complex and human evolution. Trends Genet. 6, 7–11.

Received 15 August 1996; accepted 9 September 1996.